The Vi Capsular Polysaccharide Enables Salmonella enterica Serovar Typhi to Evade Microbe-Guided Neutrophil Chemotaxis
نویسندگان
چکیده
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium) is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a) and C5a receptor (C5aR). Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi) capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis.
منابع مشابه
Capsular Vi polysaccharide antigen in Salmonella enterica serovar typhi isolates.
Characterization of Salmonella enterica Serovar Typhi isolates for their Vi capsular polysaccharide antigen-related genetic sequences is desirable to define the role of isolates lacking such sequences in differential replication at unusual sites, including those coinfected with human immunodeficiency virus (HIV). Infection with Vi-negative strains might produce typhoid fever among those immuniz...
متن کاملDetection of Vi-negative Salmonella enterica serovar typhi in the peripheral blood of patients with typhoid fever in the Faisalabad region of Pakistan.
The synthesis and transportation proteins of the Vi capsular polysaccharide of Salmonella enterica serovar Typhi (serovar Typhi) are encoded by the viaB operon, which resides on a 134-kb pathogenicity island known as SPI-7. In recent years, Vi-negative strains of serovar Typhi have been reported in regions where typhoid fever is endemic. However, because Vi negativity can arise during in vitro ...
متن کاملLoss of Very-Long O-Antigen Chains Optimizes Capsule-Mediated Immune Evasion by Salmonella enterica Serovar Typhi
UNLABELLED Expression of capsular polysaccharides is a variable trait often associated with more-virulent forms of a bacterial species. For example, typhoid fever is caused by the capsulated Salmonella enterica serovar Typhi, while nontyphoidal Salmonella serovars associated with gastroenteritis are noncapsulated. Here we show that optimization of the immune evasive properties conferred by the ...
متن کاملVi Capsular Polysaccharide Produced by Recombinant Salmonella enterica Serovar Paratyphi A Confers Immunoprotection against Infection by Salmonella enterica Serovar Typhi
Enteric fever is predominantly caused by Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A, and accounts for an annual global incidence of 26.9 millions. In recent years, the rate of S. Paratyphi A infection has progressively increased. Currently licensed vaccines for typhoid fever, live Ty21a vaccine, Vi subunit vaccine, and Vi-conjugate vaccine, confer inadequate c...
متن کاملRegulation of Vi Capsular Polysaccharide Synthesis in Salmonella enterica Serotype Typhi
The synthesis of Vi polysaccharide, a major virulence determinant in Salmonella enterica serotype Typhi (S. Typhi), is under the control of two regulatory systems, ompR-envZ and rscB-rscC, which respond to changes in osmolarity. Some S. Typhi isolates exhibit over-expression of Vi polysaccharide, which masks clinical detection of LPS O-antigen. This variation in Vi polysaccharide and O-antigen ...
متن کامل